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ABSTRACT

Functional Near Infrared Spectroscopy (fNIRS) is emerging neurological
sensing technique applicable to optimizing humarfopmance in transportation
operations, such as commercial aviation. Cognititete can be determined via
pattern classification of functional activations asared with fNIRS. Operational
application calls for further development of algloms and filters for dynamic
artifact removal. The concept of using the freqyedomain phase shift signal to
tune a Kalman filter is introduced to improve theality of fNIRS signals in real-
time. Hemoglobin concentration and phase shiftetsawere simulated for four
different types of motion artifact to demonstrabe filter. Unwanted signal was
reduced by at least 43%, and the contrast of tfterdid oxygenated hemoglobin
signal was increased by more than 100% overalls Tiiering method is a good
candidate for qualifying fNIRS signals in real timvéhout auxiliary sensors.

Keywords: cognition, fNIRS, in-task monitoring, Kalman @&, real time,
signal processing

1 INTRODUCTION

Functional Near Infrared Spectroscopy (fNIRS) is emerging neurological
sensing technique applicable to optimizing humarfop@ance in transportation
operations, such as commercial aviation. FNIRS ftiie&# hemoglobin
concentration ([Hb]) changes in the brain base@mtical intensity measurements.




Hemodynamic activations can be detected across whele head. These
ambulatory, non-invasive measurements allow in-taskitoring. Cognitive state is
determined via pattern classification of the fuoi#l activations. Thus, we can
watch the activations within the brain of a pilairithg the safety-critical task of
flying. Importantly, this is distinct from the ugd vigilance tests which the pilot
could undergo only while breaking from the taskand. Such “fit-to-fly” tests may
be passed due to short-term increases in attehedfioat (Sarter, 2006) which may
not be sustainable for long durations. During nanmig, information regarding
cognitive state could be used to trigger appropniek mitigations in real time via
changes in flight automation and information digpla

Our work continues to focus on improving technigtesapplying fNIRS to in-
task operator characterization. Optical sensing mgyove upon the existing use
of other modalities for operator characterizatiespecially through combination
with them. Examples include electroencephalograpimg other physiological
measures used for Augmented Cognition (Schmorr®@7), operator performance
research (Schnell, 2004), and crew cognition rese@ope, 1995).

FNIRS quantifies [Hb] changes with time based onticap intensity
measurements of light that has scattered throughotiter layers of the cortex
beneath the optical probe. FNIRS measures the semedynamic changes as the
functional Magnetic Resonance Imaging (fMRI) Blo@dygen Level Dependent
signal, with lower spatial but improved temporaatition. fNIRS provides a direct
connection to the wealth of information in the fMRikerature. We believe this
improves the outlook for sensing more complicatetes.

2 MOTIVATION

FNIRS works well in the laboratory, and it has beased in many
neuroscientific research studies, including reakticlassification of state using an
extended Kalman filter and known stimulus timingb@&Inour, 2009). However,
implementation for monitoring outside the laborgtoequires techniques that do
not rely on known stimulus timing or block averagirAlso, no standard for the
removal of physiological noise and motion artifget exists. Many opportunities
remain for real-time applications (Zhang 2009) &mdimproving robustness and
reliability. Motion artifact can be significant, dns likely to occur in operational
environments. Field application calls for furthezvdlopment of algorithms and
filters for the automation of bad channel detectmd dynamic artifact removal.
Such advances in operational use will benefit nsginical outpatient scenarios.

Frequency domain (FD) instruments for fNIRS meastadio-frequency-
modulated signal intensity amplitude and offsetispphase shift of the detected
optical intensity signal relative to that of theuste. The phase shift data provide a
direct indication of the coupling noise associatéth signal detection and thus the
guantification of [Hb] at that time for that chahn€hus we explore the use of this
phase measurement to drive an adaptive filterferremoval of motion artifact in
real-time.




Principally we are interested in avoiding humaroeto improve commercial
aviation safety by identifying the loss of attentd engagement using fNIRS
signals. The attentional monitoring system undevetimment (Harrivel, 2010)
could be adapted for the detection of other cogmisitates by changing the location
of the optodes and adjusting the classifier trgingata and parameters. Our
previous work has demonstrated improvements in dbmfort of optical head
probes to enable monitoring for over an hour (Watri2009), and has shown on
average 70% accuracy for real time classificatibattentional state using Support
Vector Machines with training data free of artifgétarrivel, 2011). To improve
hemodynamic activation measurements and classificaiccuracy, we continue to
implement existing cutting edge techniques whilplesing novel headgear and
data processing methods to provide such cleanidatal time during operational
use in the field. Here we introduce a filter basadthe FD phase measurement for
real-time signal quality detection and improvemdittis new filtering technique is
well-suited to improving the quality of fNIRS sigeain any application where
motion is an inherent part of the task to be pentat during monitoring.

3 RATIONALE

3.1 Optical rationale

Optical intensity is attenuated by absorption acattering along the optical path
length (the light's path through the head). Thesghia sensitive to motion because
of its dependence on the source-detector separatidrnthe index of refraction of
the tissue through which the light travels. Botfeetf the optical path length. An
increase in the actual optical path length causester absorption. This can lead to
overestimation of the change in [Hb] if the pathdth is assumed to be constant.
High variability of the FD phase shift can indicdateonsistent coupling at the
optode-scalp interface, which changes the separdigiance and possibly exposes
the detector to ambient light (which has no coesisphase shift with respect to the
source). Shifts in the phase also can indicate anotif a probe along the scalp
surface. As the probe senses different volumesssfi¢, changes in intensity are
caused by changes in the optical scattering andrpidge properties of the tissue.
This also contributes to probe relocation errows iater-subject variability.

If the phase and [Hb] changes are correlated, likédy the [Hb] changes are
due to motion-induced changes in path length opmbi®n. This is because the
increased phase indicates a larger path lengthchatduses more absorption and
lowers the detected intensity, which finally insesa the calculated [Hb]. If the
phase is steady, it is likely the calculated [Hbheges are due to activations of
interest, systemic physiology or detector gain dgesn Thus, the phase can be
monitored to automate signal removal or alert ther tio reset the probe.

This filter assumes the phase does not changefisamtly with physiological
activation. Neuron swelling or the influx of new rhatocytes may affect the
scattering and thus the optical path length ands@h&ut not on time scales




accessible to FD instrumentation.

This filtering method is most appropriate for theeduency Domain Multiple
Distance (FDMD) method where FD instrumentatiorused to calculate optical
absorption and scattering properties so absolutd [fdlues can be determined
(Fantini, 1999). In this case, the filter would &pplied to the measured optical
intensity, and anti-correlation between the phase the intensity could be used.
This can be explored in future work. Alternately,dases where relative measures
suffice while probe footprints on the head mustsb&ll and the signals must be
reliable, it can be used to filter the relative [Hthanges calculated using the
Modified Beer Lambert Law. The phase signal usemlikhbe for the wavelength
that matches the hemoglobin species of the trageg fdtered. This is the case
presented here.

3.2 The Kalman filter and its suitability

Kalman filtering (Kalman, 1960) is a technique festimating the state of a
linear discrete dynamical system. The Kalman fittgimplementation used for this
work assumes that the unknown true vatuand measurement valagof a system
at timek is determined by the model
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whereA andH are known linear operator8. andH were each assumed to be an
identity operator for this work. In this way, wesasssuming that the process under
study is simply the contamination of the data bditae noise. The variables)
andv, are process and measurement noise, respectiviedydibtributions of these
two noise sources are assumed to be
wi~N(0, Q) and w,~ N(0.R),
whereN(u,0%) is a normal probability distribution with mearand variance?. The
Kalman filter produces estimates, by means of i@t recurrence relations, of
the data
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beginning with the initial condition % = z, andp, = 1. Because of the explicit
nature of these computations, no iterative solweomimization procedures are
required for filter implementation. Furthermoregtbomputed estimates”xare
optimal in the mean squared error sense. More by,

£ = argmin E{|x, —£.1*)
for each timek; whereE is the mathematical expectation operator. Thenugti
properties of the Kalman filter estimates along hwithe simplicity of its
implementation (Zarchan, 2005) make it an exceltdice for the smoothing of
fNIRS data traces.




Values for the variances of the process and meamunenoise @ andR) must
be determined before the Kalman filter can be imgeted; since they are required
in the calculation of each recurrence relation lfer These values can be
interpreted as tuning parameters for the KalmaarfilA largerR weights the data
estimate and distrusts the measurement to produssadther output, while a
smallerR follows the measured signal more closé&ycan be increased to allow
more dynamic changes in the estimate of the system.

We propose that the phase changehssociated with a [Hb] channef is a
natural choice of information for computing an agpiate value foR at each time.

4 METHODS

Synthetic data were created to mimic [Hb] and plss# traces with a data rate
of 6.25Hz for 400s to demonstrate the feasibilityhis filter. Four [Hb] time series
were simulated: relative changes in both oxygenatadl deoxygenated (reduced)
hemoglobin species concentration ([HbO] and [HbRj) two source-detector
separations, which we label close and far. A clmgrce can be used to measure
systemic physiological contributions to the sigoiinterest (biological “noise”) on
a per-sensor basis (Zhang, 2009) by interrogativadiav tissue (not cortex). The
far source interrogates both superficial and caltissue.

The input trace to be filtered was created by agldion-dynamic physiological
signals for cardiac at 1Hz, respiration at 0.25 &t} Meyer waves at 0.1Hz to the
close source traces. Functional activations, anallenphysiological contributions,
were added to the far source traces. Random na@seadded to all traces. In figure
3, the input [Hb] trace is shown (top, black) afigthin-species subtraction of the
close source signal from the far source signaln thebtraction of [HbR] from
[HbO]. Functional activations were simulated withngma-variant functions as in
Abdelnour, et al. (2009) eq. 3, with the [HbR] aile being -1/4 of [HbO].

Four different types of motion artifact were sintath These are outlined in
Table 1. No motion artifact is simulated from 0s5@s. Artifact from probe slip
(across skin with no air gap) was simulated betwg@nand 100s by allowing the
phase to vary randomly over tens of degrees. Attffam decoupling (an air gap at
the detector interface) was simulated between Hd@s200s with phase varying
over hundreds of degrees. Artifact from a probe puvas simulated with a spike in
the phase at 225s, while artifact from a bump atdcation was simulated with a
spike and a step increase of 10 degrees at 32&seRinanges on these orders of
magnitude do occur in real data. [Hb] signal whadvaried with the phase was
generated for the slip and the relocation bumpaats.

In the case where a noisy signal could appear @ [btb] change (50s — 200s),
filter performance is quantified as percentageigria mean reduction. In the cases
where motion noise obscures the activation of @sgrperformance is quantified as
contrast-to-noise ratio (CNR) improvement betweas tnfiltered and the filtered
signal. CNR is defined here as mean activationadigrinus mean reference signal
(Os to 50s), divided by the square root of the sfithe variances in those signals.




4.1 Mathematical Implementation of the Kalman filter

To implement the Kalman filter, the measuremens@aiariance, R, can be set
to a function, possibly non-linear, of the variannethe phase over a window of
time prior to that instance. The use of the phafferdntiates our method from
other implementations of Kalman filtering for matiartifact removal (I1zzetoglu,
2010). Here, the tuning parameter R was set tedhance of the phase in a rolling
window of 1s prior to the current instance, plus torrelation of the phase with the
[Hb] trace being filtered during 20s prior (whialris on at 20s). The contributions
of the variance and correlation were linearly sgal€he absolute value of the
correlation was added if it was greater than astioll of 0.3. Thus only high
correlations impact R. This threshold has not bagtimized, and can be raised for
less aggressive filtering.

4.2 Parameter Selection

Parameters were selected empirically for this pitdy to maximize signal
retention and artifact rejection. Different scadetbrs and rolling time window sizes
were explored for both the variance and the caicela The scale factors were
selected to bring the magnitude of R into the Usefnge of 0 to 5. R should be
small (~0) to allow desired changes in signal torétained, and large to remove
artifact. R on the order of 2 or more was foundetmove artifact effectively (as in
figure 3, 100s — 150 s).

Increasing window size increases signal plateautdudter turn off delay, as
seen in figure 3 at 340s. It is due to correlatontributing to R even after it has
passed in time. This may be tolerable for consamvatvestigators who wish to err
on the side of signal removal. Shorter windows rbayless able to detect artifact.
Figures 1 and 2 show improved rejection (signal mealuction) of the probe slip
(50s - 100s) and the probe relocation (325s) attifattained by allowing the
correlation to contribute to R.

Q was set to 1e-4 or 1le-5 as noted in the figufdsrger, high frequency spikes
are not removed. If smaller, desired signal chamgesattenuated. The initial state
estimate was set tg z 0, and the initial variance of the filter was &ep, = 1. All
of these parameters are available for adjustmehbptimization, with the objective
of maximizing the rejection of artifact and theemrgion of good signal.

In real application, optimal parameters may depemd source-detector
separation. For example, the signal to noise w@tithe phase itself depends on the
source-detector separation (Dehaes, 2011). Idedléy,[HbO] close and far, and
[HbR] close and far traces should be filtered wlithir own parameters.




Phase-based Adaptive Kalman Filter
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Figure 1 Calculated R (bottom) used to filter the [HbO] trace (top, filter output in negative). The
phase variance from a rolling window looking back 1s is used to calculate R. Q was set to 1e-4.

Phase-based Adaptive Kalman Filter

Physio-corrected HbOx

100 150 200 250 300 350 400
time (sec)
T

o 50 100 150 200 250 300 350 400
time (sec)

Figure 2 Calculated R (bottom) used to filter the [HbQ] trace (top, filter output in negative).
Both the phase variance from a rolling window looking back 1s, and the correlation from a rolling
window looking back 20s, are used to calculate R. Q was set to 1e-4.

5 RESULTS

Atfter filtering, the mean of the unwanted peak kedw 50s and 100s is reduced
by 43%. That between 100s and 200s is completehpved. The reference signal
mean is reduced by 9%. CNR is increased by mone 108% overall. The results
are listed in Table 1. The filter output traceliewn in figure 3 (negative, top).




Phase-based Adaptive Kalman Filter (synthetic data)
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Figure 3 Calculated R (bottom) used to filter the [Hb] trace (top, filter output in negative). Both the

phase variance and the correlation are used to calculate R. Q was set to 1e-5.

Table 1 Phase-based adaptive Kalman filter performance by motion type

Time Mqtlon Phase shift signal Filter Performance Result
simulated feature
Os- none none « CNRincrease: 125%
50s (reference) (reference) « signal mean reduction: 9%
50s- probe slow changes « unwanted signal mean
100s slip correlated with [Hb] reduction: 43%
100s- | probe . . « unwanted signal mean
. very high variance )
200s = decoupling reduction: 100%
200s- | transient . « CNRincrease: 144%
spike at 225s ] ]
300s probe bump « signal mean reduction: 12%
. « CNRincrease: 204%
spike and step . .
300s- = probe bump, . signal mean increase:11%
] increase at 325s, ]
400s relocation . « late filter turn off extends
correlated with [Hb] o
activation by 10s

6 DISCUSSION

An advantage of this filtering method is that ithowomes on when needed
according to actual conditions without adding arcted or auxiliary sensor. The
phase provides an objective indication of wheth#s][changes are due to motion
without relying only on the [Hb] trace. Also, théngse can simply be used to




indicate data quality for complete removal durimg{pprocessing.

A disadvantage is the introduction of time delalse filter can only change the
estimate so quickly, and delays can be on the aflseconds when the filter is on
(high R). Filter turnoff delay is also a problens, @iscussed in section 4.2 and as
evidenced by the artificial increase in sighal mbatween 300s and 400s. Q may
be increased and time windows shortened to redeiessl

Other methods for real time artifact removal ineusimply smoothing, using
other signal correlations, or using a moving stasd#eviation. With smoothing,
unwanted signal is not rejected, and the tempasdlution advantage of fNIRS is
eroded in all instances. The Kalman filter can bpisted to quickly follow non-
noisy data by instance. However, smoothing doesnimduce delay.

Cui, et al. (2010) present a successful methodefimoving motion artifact from
fNIRS signals which takes advantage of the antiedation between [HbO] and
[HbR] inherent in functional activation. Howevehet phase-based filter removes
motion artifact from both channels intended to meadunctional activations and
channels for systemic physiology, which lack neagivation.

A moving standard deviation measurement on the [siphal itself has been
used to detect spikes for removal (Scholkman, 2H6)vever, mechanical changes
can degrade the signal via poor coupling resultimg relatively flat [Hb] signal.
This would not trigger a moving standard deviatigtection algorithm.

7 CONCLUSIONS AND FUTURE WORK

The phase is a good candidate for qualifying fNIR§nals in real time,
enabling automated bad-channel detection and maitifact removal without
auxiliary sensors. Successful future work wouldréase the amount of motion
which can be tolerated while obtaining useful fNI&i§nals. This real-time filtering
technique relies upon frequency-domain instrumentatbut is well-suited to
improving the quality of systemic physiology and ndtional activation
measurements with fNIRS in any operational envireninwhere motion is an
inherent part of the task being performed.

Further parametric study is needed to minimize ydeland maximize the
performance of the filter for data collected withnflan subjects. The investigation
of non-linear functions of the phase variance d&ddorrelation between the phase
and the [Hb] is planned. The filter should be tregdthe measured optical intensity
with the FDMD method. Human subject studies to gfiathe motion of the probe
with respect to the head during the phase shiftsomeanent should be undertaken.
Ultimately, cognitive state classification could performed with this filter to
determine the effect on classification accuracy.
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